Impact of Phosphorus on NOx Aftertreatment Catalysts

Ronald Silver, Ashley Alletag, Matthew Stefanick

Objective

Compare the loss of NOx reduction performance over LNT and SCR catalysts due to phosphorus exposure using a laboratory diesel fuel burner

Characteristics of Phosphorus Deactivation

- **▶P source: Zinc Dialkyl Dithiophosphate (ZDDP) from Engine Oil**
- > P deposit distribution: More on catalyst inlet than on outlet
- > Key factors: P concentration in the exhaust, not catalyst composition
- > P deposit mechanism
 - Uncombusted ZDDP → Zn₂P₂O₇ amorphous glaze on catalyst
 Combusted ZDDP → P₂O₅ (or H₂PO₄) which can react with catalyst
- > Study focus: Impact of combusted ZDDP on catalyst performance

Catalyst Test Bench/Test Procedure

Phosphorus Aging System

Phosphorus source: (TCP) Tricresyl Phosphate (C21H21O4P) blended in zero sulfur diesel fuel

Exposure Time	Amount of P exposure/unit	Corresponding Time*
	volume catalyst	on engine
90 minutes	3.6 (g/L)	4000 hrs
250 minutes	10 (g/L)	10000 hrs

*Assuming 800 ppm P in oil, 20L catalyst volume

Phosphorus Deposition (10 g/L Exposure)

P distribution 1" 65% total P 1" 1" 10%

- Similar amount of phosphorus adsorbed on each catalyst
- > Non-selective deposition

Results over Vanadia Catalyst

- > P impacts strongly at high temperature.
- **▶** P impacts both NOx and NH₃ conversions.
- > Ammonia oxidation decreases NOx reduction.

Results over Zeolite Catalyst

- > P impacts less on zeolite than vanadia catalyst.
- > P impacts similarly in broad temp range.
- > No drop off in activity at high temperature.

P Effect on SCR Kinetics

- > (< 400 °C): Kinetic limited reaction, less P impact
- > (> 400 °C): Diffusion limited reaction, more P impact
- Similar kinetics for both vanadia and zeolite catalysts
- P capacity: zeolite > vanadia (due to higher zeolite surface area)
- > Increasing a decreases activity with increasing P
- ➤ P exposure hinders ammonia conversion over SCR catalysts.

Summary

- Over SCR catalysts
 - P similarly impacts both NH₃ and NO conversions.
 - Zeolite catalyst shows higher P tolerance initially, but both catalysts had similar deactivation after extended exposure.
 - P blocks NH₃ adsorption sites which prevent NO reduction.
- Over LNT catalysts
 - P impacts significantly on NOx storage capacity leading to decreased NO conversion.
 - P impacts more on NOx capacity at low NOx slip than at high slip.
 - P impacts less on NO oxidation function.

Results over LNT

➤ Loss of NOx storage capacity with P exposure is the primary cause of decline in NOx conversions.

Phosphorus Impact on LNT BSFC

Assumptions

- > Constant amount of HC injection for rich pulse
- ➢ Constant t_{R,} variable t_L
- Increase # of rich pulses with decreasing NOx capacity

Comparison of LNT vs. SCR

Acknowledgements

Paul Park, Josh Driscoll for helpful discussion

Nan Yang and Rex Couture (Washington Univ.-St. Louis) for sample analysis

Umicore for SCR catalyst, Svetlana Zemskova for LNT catalyst

Funding in part from DOE – Office of Freedom Car and Vehicle Technologies, subcontract #4000021385

Conclusions

- > Phosphorus reduces NOx reduction catalyst performance and increases BSFC penalty.
- > Phosphorus impacts LNTs more than SCRs but presents a challenge for both strategies.

